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A truncated multi-configuration SCF formalism is presented which is particularly suited to 
describe correlation effects in semiempirical molecular orbital methods. The orbital energies reflect 
a correlated, SCF-like description of the situation of electrons in molecules. On the basis of symmetri- 
cally ortbogonalized atomic orbitals approximations are introduced which lead to CNDO and 
INDO like methods. Consistency requirements lead to a new formula for the fl integral. The method 
can be parametrized so as to yield good ground state potential surfaces. The orbital part is demon- 
strated in the simple case of H2. 
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1. Introduction 

Semiempirical molecular orbital methods have a great deal of attraction 
among chemists these days. However, to our knowledge, there exists presently no 
semiempirical method which includes correlation effects in a theoretically satis- 
factory and practically useful fashion. CNDO and INDO methods were designed 
by Pople and collaborators [1] to reproduce dipole moments and equilibrium 
geometries, but fail to predict binding energies and force constants [2]. Since the 
binding energies are in general too large, it would be meaningless to add a configu- 
ration interaction formalism to the existing scheme. Dewar and collaborators 
have designed a sequence of MINDO methods and managed after extensive use of 
adjustable empirical parameters to obtain both equilibrium distances and binding 
energies [3]. Both methods are based on the SCF formalism and thus unable to 
describe potential surfaces far from the equilibrium. 

We propose here a procedure which allows with little empirical adjustment to 
retain the attractive features of both Pople's and Dewar's work, namely to be 
theoretically justifiable and practically useful. For this purpose we develop a 
modified and truncated multi-configuration SCF formalism. In this formalism 
we introduce systematic approximations by means of a symmetrically ortho- 
gonalized AO basis [4]. Various levels of ZDO assumptions lead to CNDO and 
INDO like methods. The consequences of the ZDO assumption are reflected in 
the representation of formulas of the remaining integrals. In particular, a new 
formula for the fl integral is derived which reduces the number of adjustable 
parameters considerably. 

* Permanent address: Department of Chemistry, Saint Louis University, Saint Louis, Missouri 
63156, USA. 
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The definition of a multi-configuration SCF operator after a CI step yields 
orbital energies which are physically more meaningful than SCF energies, in 
particular, at distances far from the equilibrium. This is demonstrated for the 
simple case of H2. For polyatomics the use of a localization procedure is suggested 
to reduce the number of configurations for dissociation. The involved relation to 
the orbital picture is briefly discussed. 

2. The Extended Hartree-Foek Method 

In our discussion of correlation effects, we restrict ourselves to intra-shell 
pair correlation. The total wavefunction is approximated as a linear combination 
of the dominant Hartree-Fock configuration T o and doubly excited configura- 
tions Ti of closed-shell or open-shell form. 

I 

T=AoTo+ ~ AiT i (2.1) 
i = l  

with 

[ ( ~ / ) 1 ~ 1 ~ / ) 2 ~ 2  . . .  l~p~)p.., l])n~)n) closed shell 

T~= [0pl~lW2v-P2...~p~q...~p,~,) open shell 

t - ( ~  ~2~z-..  ~p~q..-~,,~,)],  

l <_k<_n;p,q>n. 

For convenience, we use the abbreviation i for (k,p) or (kk, pq). The set 
To, T~(i = 1 ... 1) is orthonormal, Usually the multiconfiguration Hartree-Fock 
equations I-5, 6] are derived by a variation of the following energy functional with 
respect to the MO's ~p subject to the orthogonality conditions. 

E = ( T I H [  T)/<TI T> (2.2) 

( • )/( !,' = AoZHoo+2 aoA, Ho,+ ZAiAjHij A~+ A{ 
i = 1  i,j i= 

with 
Hij = <Ti[HI Tj)  

The coefficients A are determined by a secular equation. 

I 

Aj(Hij - E~Sij ) = 0, i = 0,1 ... I (2.3) 
j = 0  

We suggest another way of arriving at (2.3). This will open the way to eigen- 
value equations of an extended Hartree-Fock Hamiltonian which appears to be 
particularly useful in semiempirical methods. We shall show later that the resulting 
eigenvalues can be physically interpreted. 
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If we consider the exact eigenfunctions kU of the system's Hamiltonian H, the 
following equality holds 

E = ( ~ , I H I ~ ) / ( ~ , I ~ ) ,  i=0,1  .. . .  

With (2.1) the energy takes the form 

E = Hii + ~, a jH i j ,  i = 0,1 ... (2.4) 

with 
aj = A j A  i . 

Concerning the determinationofcoefficient Ai and energy E, (2.4) is equivalent to 
(2.3) also in a finite expansion. In particular the total energy of the ground state is 
represented as a sum of Hartree-Fock energy and correlation energy in a simple 
form. 

E = Hoo + ~, a jHoj  with aj = A j / A  o . (2.4a) 
i=1 

Such an expression has also been used by t3kstiz and Sinanoglu [7]. The A~ are 
determined by (2.4). ff the molecular orbitals ~b~ used in (2.2) and (2.4) are the same, 
the ground state energy values of (2.2) and (2.4a) will be the same. However, 
variation of (2.2) and (2.4a) with respect to the MO's ~pi leads to different multi- 
configuration SCF operators, hence to different ~Pi. In general, (2.4) will yield less 
correlation energy than (2.2) at intermediate internuclear distances. Disso- 
ciation is, however, described properly. The advantage of this extended Hartree- 
Fock operator is the linear form of correlation energy in the A~ which makes the 
eigenvalues e~ of such an operator the straightforward generalization of the eigen- 
values of an SCF operator. This is not the case for the multiconfiguration orbital 
energies of Das and Wahl [5] or Veillard and Clementi [6]. 

In the following, we shall demonstrate the derivation of a multi-configuration 
closed-shell case. A generalization to open-shells is straightforward. The total 
energy expressed in integrals over MO's i ( -  ~Pi) is 

n 

E = 2 ~ Hi] ~ + 2dij - Ki j  + ~, akpKkp 
i i , j  k ,p  

Hi?re=( i [Hcore l i )  

Jij = (iil j j)  

K;j  = (ij l ij) 

Kkp = (kprkp)  

akp = Akp/Ao . 

(2.5) 

MO's k, k- of kv o are replaced by p, g to form a representative doubly excited con- 
figuration. Variation of the energy subject to the MO orthogonality conditions 

i , j  / 
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yields 

with 

Fi [i) = Y'. aij [J), i = 1... n 
J 

Fi = F scF + W/ 

w,= Z a.w.. 
l>n 

(2.6) 

We obtain an explicit form for Wu in the following way. Since Kkv does not depend 
on lpi for i ~ k, it holds that 

Wil ~- Wkp(~ik~lp. 

For i = k Kkp can be rewritten as 

Kkp=�89 Vkp + Vk~l k(1)) 
with 

Vkp= [k(2)[ l [p(l)p(2))(k(l)[] 
r12 (2.7) 

V~v= [lk(1))(P(2)p(1)l rl-~12 ]k(2) ] 
so that 

w~p = �89 + G ) .  

For the unoccupied SCF orbitals i=  p the coupling operator Wpk is obtained by 
exchange of k and p in (2.7). Also apk = a~J holds. The coupling part of the Hamil- 
tonian then takes the final form 

[ ~ i= l . . .n , i~k ,  

Wi = akp Wkp for i = k ,  

I ~ a[pX Wvk i = p , p > n. 

(2.8) 

Because of the difference between (2.2) and (2.4) the coupling operator Wis only 
half of the one in Wahl's paper [5]. A similar form to (2.8) appears in Kutzelnigg's 
approximate natural orbital approach [8]. 

The non-diagonal Lagrangean multipliers e~j can be absorbed by the use of 
orthogonality relations [5]. The final equations then take the form 

(F~ - R , ) [ i )  = ~i ] i )  

(2.9) 
Ri = ~ ]J> (jlFi + Filj> (J]. 

j.#i 

In practice, one cycle of the following three steps will be sufficient to obtain an 
improved SCF-like description: 1) Solution of the SCF equations, 2) Deter- 
mination of the CI coefficients A by means of (2.3), 3) Solution of the EHF equa- 
tions (2.9). Repetition of this cycle will not lead to new aspects, but may involve 
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convergence problems, so we do not advocate it here. The energy can then be 
written in the following way 

E =  ~ < i l H  . . . .  + Fi]i> 
i 

= ~ ( i l H  .... + ~//CF ~_ W/i/> (2.10) 
i 

= F.  (~F ~~ + O. 
i 

The orbital energies play here the same role as in SCF theory, but include corre- 
lation effects. 

3. CNDO and INDO Forms 

To relate the formalism of Section 2 to approximate molecular orbital methods, 
we expand the MO's in AO's and write the EHF equations in matrix form 

(F i -- Ri)C i : e, iC i i = 1...  n . . . .  , p . . .  

F i = FSCF+ W/ (3,1) 

Ri = Y', (SCjCJF, + FiCjCJS  ) . 
J 

We concentrate now on the representative operator Fk. Its elements are 

F - F scF 4- W.v 
g v  - -  - - g v  - -  

with 
FSCF _ core .., -H, , , ,  + Z P~,.I-(#vleo-)-�89 

Q,O" 

Vr =�89 ~ F, P'eaP;" E(~zlQo))S,~ + (vzleog)Sj 

o c c  o c t  

Po~ = 2 ~ % %  = 2 F, Pea(i) (3.2) 
i i 

P'oe = CkgCka 

ptr 
~:e) ~" s CpzCp•akp 

P 

In the following symmetrically orthogonalized AO's [4] will be assumed, which 
lead to further simplifications 

Ri = E C~CJFi + FiC.iC~ 
J 

(3.3) 
VV~ = 1 E ~ P'o [P'o~(l~Z [e o) + P'o.(vz l e o)3. 

Q Z,r 
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Various levels of approximation will be considered: 

a) CNDO form 

F S C F  co re  

FSCF core . v  = - 

W . .  = E e' #e;.(uulee) 

W~ = �89 ~ P'e~P'~(#plee) + P'q.P~v(vv leO) 

so that 

(3.4) 

with 

with 

(/~/~1#/1)' = (1 + 2 P'uuP~u)(l~Pl#l~ ) 
Puu 

(/~/~lee)'-- 1 + (/~#lee) 
" Puu . 

- -  H ~  - ~ P ~ ( P # I  vv)  + A~,~ F# v _ co re  1 t 

(3.6a) 

(/~p[vv)' = (1-(P'~'u+P'v~)P'~)(U#Ivv) 
P~  

A ~ = ~P.v(P~.~ ' " + P~)(/~/~[/q~)" 

+ 1 Z P'a~Pgu(Iq~lee)§ 
Q C: Is , v 

(3.6b) 

Fuu = H~~ re + �89 + 2P'uuP~u)(P#II~P) 

+ ~ (P~ + P'~uP'~u)(ppJee) (3.5) 

Fu~ : HCu~ e - �89 - (P'~ + P'~)P~](#IX[VV) 

t t! t! + ~Puv(P.. § Pv~)(##]##) 

+�89 Z P'Q~P'Q.(P#Iee)+P'~,P'~(VVleQ). 
Q 4 : # , v  

It is widely believed that semiempirical SCF methods can cccount for corre- 
lation by empirical adjustmem of parameters. How much of this is true will be 
shown in the following. We try to reduce the EHF equations (3.5) to an SCF form: 

co re  1 t t Fuu=Huu +YPuu(/~PI#P) + Z Poe(#/tlee) 
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From (3.6a) it appears that modified one- and two-center repulsion integrals 
could be introduced which would keep the SCF formalism intact. However, 
(3.6b) shows that the modifications to be introduced here are not consistent 
with those in (3.68). Also a new term A,~ appears which has no analogue in SCF 
theory. It is hard to conceive that the modifications for parametrization intro- 
duced in (3.6) would be satisfactory even under further simplifying assumptions 
in a particular class of molecules with fixed geometries. It is obvious from there 
that previous attempts of reparametrization had to fail [9, 10]. Caution was 
expressed already in Hansen's paper. 

Equations (3.5) involve only four types of parameters 

a~, = Hu~ ~, flu,= HeY r (#P l,u#), (,uktl vv) , 

whose evaluation will now be attempted. In the calculation of c~ we follow Pople 

with 

gAB 

~.= G -  ~ u~. 
BCA 

( y s2(1)--Z~ dz~ CNDO/1 

ZB ?AB CNDO/2.  
(3.7) 

It should be noticed here that in the choice of I, Vu(W ~ r Wp) Pople does not (!) 
follow his invariance requirements. He drops the invariance under hybridization. 
But this is not serious, since recent work shows [1l, 12] that invariance under 
hybridization is not a necessary, but sufficient condition for the invariance of the 
SCF equations. 

To evaluate fl, we use our own studies. We have shown that in polyatomics 
[13, 14] 

flu_. _1 S.~[(~, +~,) + z ,~ (~ , -~ ) ]  + 1-S~,R,~ dRu,dS"~ (3.8) 

and in diatomics [1.5] 

fl,~ _ 1 ffu~ -- ~- Suv(~, + ~v (3.9) 
1 - S2u~ 

holds. 
The simplest approximation for the two-center integral fl,b better than Linder- 
berg's [16], which was proven to be unreliable [13], would then be 

1 
Bah ~ 2-  So, b[(~; + ~;) + 1 dSab 1 S.b(a~ + ab) 

Z~b(~"--~)]+ R dR 2 

1 dSab 
1 Sab[(A~a+d~b)+~4ab(.~a .~b+A~a__A~b)] + R dR 2 

(3.1o) 
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In the spirit of the CNDO method we put 

with 

A ~  a -~ A ~  b = - A Z]YAB 

z~ Z = Z ~  - Z A + ZB - -  Z B . 

(3.11) 

AZ can be used as an adjustable parameter, e.g. to adjust the binding energy. 
Since it is well known that the electronic Coulomb integrals over ortho- 

gonalized orbitals do not differ considerably from their non-orthogonal counter- 
parts, we again follow Pople to p u t  

7AA = (f lA#A [ ~L/A[/A) = (/2ANA [ VAVA) = ( S A S A I S A S A )  

~AB = (PA#A] O'BO-B) = ( S A S A I S B S B ) "  

(3.12) 

The total energy including nuclear repulsion can be separated in "atomic" and 
"interatomic" parts. 

E SCF corr [ I~SCF corr 
= E (EA + EA ) -4- E kX"AB -]- EAB ) 

A A<B 

1 A ESCF = EA puuW. + gE  (PuuP~ - 1  2 P.v)YAA 
# t.t,v 

g?SCF = E A  E B  (2P~fluv-~ 2 PuvTAB) ~"AB 
g v 

-t- Z A Z B R A B  t ~ PAA UAB - -  PBB USA + PAAPBB~]AB 

-1 E A  A t n EA~ = 2 E E ~" P,.(k)PQ.(k)Po,(k)] )'AA 
k ,a v e 

E ~  ~ = [ Y', Z A ~ Z B Pu~(k)P'~(k)P's 7m. 
k # .v Q 

(3.13) 

b) INDO forms 

FSCF 

f,,s~v F 

~g:p 

-- f scFc~D~ - ~Puv(I~VIpV)6A,,A~ --,uV 

�9 .IJzCNDO 4- A , ,t t n = 2 (P..Poo + PqF, Po.)(#e[#O ) ' , a ~  
qg: # 

~- wCNDO 4- 1 ~'~A~ ilor 1On ' " 
l~v - - 2 /  t-,,~-oe+Pe~Peu)(#al#e) 

Q 

Q 

(3.14) 
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so that 

Fuu = -uuF cND~ -4- z.,S'A" ,--u,--~Q (p' p" + P'QuP"ou - �89 

Fu~ = --gvFCNDO -- 3Ptzv(I/Vl#V)C]AuA~ 

_~_ 1 E A .  (P'u~Poe + P ' o * P ' s  
ect~ 

(3.15) 

! ~"Av [D t p n  ..4_ ~ n + 
Qg:v 

In addition to the CNDO parameters, exchange integrals appear. For the same 
reasons as in the CNDO part, all two-electron integrals are evaluated over 
non-orthogonal orbitals according to Pople's procedure. Differences arise in the 
evaluation of c%- H~, r~ and fiu~- H~  ~" We have shown previously [15] that 
in diatomics 

1 
(3.16) 

holds. A combination of (3.16) with (3.8) yields 

1 ( 1 -  ] /1--  8~) -- (1-- ~a~1 
c~, = ~  2 1 - -  8 2  

Sab dSab 
~a --~b) R d R  (3.17) 

In the CNDO method Pople neglected the second and third term in (3.17) and 
we followed in (3.7) to keep in line with the CNDO invariance assumptions. In 
the INDO method however, the neglect of these terms cannot be justified. 

To obtain a valid formula for fl~b, we use again (3.10), but replace (3.11) by 

A~,= Ka~ a . (3.18) 

K is considered as an adjustment parameter. The total energy is again separated 
in atomic and interatomic, SCF and correlation part 

E =  E (  ESCF-I-E~ ~ E (gTSCF .. . .  t~,AB +EAB ). (3.19) 
A A<B 

For reasons of convenience, we do not list the detailed expressions, they can be 
obtained similarly to the CNDO approach. Differences will not only arise 
through the appearance of exchange integrals, but also through modification of 
cCs and fi's. 

4. Orbital Description of  the Ground State of  H 2 

To demonstrate the consequences of the foregoing sections, we choose the 
simple example of ~Lhe ground state of H 2. Let us take, for convenience, a double 
configuration wavefunction which allows for proper dissociation. 

7* = A 0 7% + A1 ~ (4.1) 
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with 
T o = lsag(1)lsao(2 ) 

T 1 = lsa,(1)lsa.(2). 

The first term represents the Hartree-Fock part, the second the correlation part. 
We now approximate the MO's as a linear combination of symmetrically ortho- 
gonalized AO's a, b 

1 
= (a + b) 

(4.2) 
1 

1 sa ,  = ~ -  (a - b). 

Under neglect of differential overlap the elements of the EHF operator take the 
form 

2 (  l~ At l (aalaa)+ ( 1 i ~ _ )  
FaZ~V = % +  1+ 2 Ao] 4 (aalbb) 

(4.3) 
FEHF 1 A1 ~_( 1 ~_) 

ab  = [~ab-~ -4-~o (aalaa)- 1+ ~- (aalbb). 

For A1 = 0 we obtain the well-known Hartree-Fock elements 

F~. cv = ~. + �89 (aalaa) + (aalbb) 

FSCF ,,b = fl,,b �89 (4.4) 

If we wish to reduce the diagonal part of the EHF operator to SCF form, we can 
put 

( (aa[aa)' = 1+ Ao ] (aalaa) 

( 1 A1)(aalbb). (aalbb)'= 1 4 Ao 

A1/Ao is negative, as can be seen from the secular equation 

A t Hoo - E 
- ( 4 . 5 )  

Ao Hol 

Hoo > E, Ho~ > 0 .  

This implies that the single-center repulsion integral is decreased, whereas the 
two-center integral is increased. The maximum change occurs for large inter- 
nuclear distances where AlIA o ~ - 1 and amounts to 50 % decrease for the single- 
center integral and 25 To increase for the two-center integral. Unfortunately, this 

parametrization cannot be applied to --ab~'EHF" Here, (aalbb)' must equal 1 + ~- 

and an entirely new term (aalaa) appears. We conclude that it is impossible to 
define modified one- nad two-center integrals consistently for both diagonal and 
non-diagonal elements of the EHF operator. 
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We now proceed to the orbital eigenvalues. From symmetry reason, the 
MO's %, and a ,  are orthogonal. So the orthogonalization operator R can be 
dropped. Since the AO's are also orthogonal, we obtain 

~EHF F EHF 4- K'EHF 
= -a ,  ----,b (4.6) 

= ~,,+fl,,b+ ~ 1 + (aa[aa)+ 1 -- (aalbb) 

whereas the Hartree-Fock energy would be 

escv = % +/?,b + �89 (aalaa) + �89 (aa]bb). (4.7) 

The total energy is in both cases 

E core ---= ~+ ,4- ~+ 
so that 

E EI~v = 2(%+fl ,b)+  1 + (aalaa)+ - f  1 - (aa[bb) 

(4.8) 
E s c v =  2(e~, + flab) + 1 (aalaa) + �89 (aalbb). 

For large internuclear distances as R--, 0% An -~ -A o ,  the set of formulas appears 
as follows 

Fz,~ F = % + l(aa [aa) 

FErW -- �88 
ab 

~E+HF ~ ~a 

E Er~F = 2~a, 

FSCF + �89 aa ~ O~a 

FSCF 
ab ~ 0 

eSCF __ C~ a + �89 

E s c v =  2% +�89 

(4.9) 

(4.10) 

Most noticeable is that the EHF formalism does not only yield the correct total 
energy E but also the correct orbital energy e. An earlier paper on H 2 by Hansen 
[9] used a CI formalism and did not give this insight. Finally, Wahl's formalism 
with a twice as large coupling operator would lead to e+~%- �89  for 
R ~ oc. So Wahl's orbital energies do not reflect the physical situation. 

5. Discussion and Conclusion 

In this paper, we have developed an Extended Hartree-Fock formalism 
suitable for semiempirical molecular orbital methods. The advantage of the fact 
that the correlation energy is represented linearly in the coefficients A in Eq. (2.4) 
leads to an SCF like orbital approach reflected in Eq. (2,10) for the total energy. 
In the case of H 2 we demonstrated that the eigenvalues of the EHF operator 
have physically interpretable characteristics, in particular they follow dis- 
sociation properly. To treat polyatomics efficiently, further assumptions about 
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the MO's would be necessary. Work now in progress will use Boys' localization 
procedure 1-17] to keep the number of configurations in polyatomics as small 
as possible. This is not only easier, but supported by recent results for CH4 [18] 
that, contrary to conclusions by Sinanoglu [19], intra-pair correlation in loca- 
lized orbitals is dominant. There are some questions with the orbital picture 
when the CI part is based on localized orbitals. The following steps would be 
necessary to keep as close as possible to the delocalized SCF part: 1) Solution of 
the SCF equations, 2) Localization of the MO's, 3) Solution of the secular equa- 
tion, 4) Definition of an EHF operator based on localized MO's, 5) Solution of the 
EHF equations. In general, this last step will partially delocalize the MO's so 
that the orbital energies e will be physically descriptive. In CNDO and INDO 
like forms with minimal basis sets, left-right and angular correlation can be 
partially accounted for. But there is no way to include in-out correlation. 

We have already applied the new parametrization of/~ integrals in the CNDO 
and INDO forms of the theory. Most encouraging results for potential curves and 
force constants will be published elsewhere [20]. 

Acknowledgement. I appreciate the hospitality of Prof. H. Preuss during my stay in his institute. 
I thank Dr. W. Meyer for a discussion about some aspects of the correlation problem. 
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